An Inverse Random Source Problem for the Biharmonic Wave Equation
نویسندگان
چکیده
This paper is concerned with an inverse source problem for the stochastic biharmonic wave equation. The driven assumed to be a microlocally isotropic Gaussian random field its covariance operator being classical pseudo-differential operator. well-posedness of direct examined in distribution sense, and regularity solution discussed given rough source. For problem, strength source, involved principal symbol operator, shown uniquely determined by single realization magnitude averaged over frequency band probability one. Numerical experiments are presented illustrate validity effectiveness proposed method case that white noise.
منابع مشابه
An inverse random source problem for the Helmholtz equation
This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation, which is to reconstruct the statistical properties of the random source function from boundary measurements of the radiating random electric field. Although the emphasis of the paper is on the inverse problem, we adapt a computationally more efficient approach to study the soluti...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولStability of an inverse problem for the discrete wave equation
Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterpar...
متن کاملThe Conditional Stability in Line Unique Continuation for a Wave Equation and an Inverse Wave Source Problem
In this paper, we prove a conditional stability estimate of the logarithmic type for a wave equation on a line in Rn, 2 ≤ n ≤ 3 by combining the Fourier-Bros-Iagolnitzer transformation. Then we apply it to an inverse wave source problem of determining a spatially varying source term on its extended line by observations of a segment and establish the conditional stability.
متن کاملSOLUTION OF AN INVERSE PARABOLIC PROBLEM WITH UNKNOWN SOURCE-FUNCTION AND NONCONSTANT DIFFUSIVITY VIA THE INTEGRAL EQUATION METHODS
In this paper, a nonlinear inverse problem of parabolic type, is considered. By reducing this inverse problem to a system of Volterra integral equations the existence, uniqueness, and stability of the solution will be shown.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2022
ISSN: ['2166-2525']
DOI: https://doi.org/10.1137/21m1429138